Limiting Reactants Worksheet

1. 3.45 moles of nitrogen gas (N₂) reacts with 4.85 moles of hydrogen gas (H₂) to form ammonia (NH₃).

$$N_2 + 3H_2 \rightarrow 2NH_3$$

- (a) What is the limiting reactant?
- (b) How many moles of ammonia will form?
- 2. A welder has 20.0 moles of acetylene gas (C_2H_2) and 10.0 moles of oxygen gas (O_2) . They combine to form water and carbon dioxide.

$$2C_2H_2 + 5O_2 \rightarrow 2H_2O + 4CO_2$$

- (a) Identify the limiting reactant.
- (b) How many moles of carbon dioxide gas (CO₂) will form?
- 3. A student places 2.36 moles of acetic acid (CH₃CO₂H) and 3.89 moles of sodium hydroxide (NaOH) in a beaker of water. They react to form sodium acetate (NaCH₃CO₂) and water. CH₃CO₂H + NaOH → NaCH₃CO₂ + H₂O

How many moles of water will form?

4. 0.300 moles of bromine gas (Br₂) and 0.500 moles of chlorine gas (Cl₂) react to form tribromochlorine (Br₃Cl).

$$3Br_2 + Cl_2 \rightarrow 2Br_3Cl$$

How many moles of this product will form?

5. 100.0 grams of sodium sulfate reacts with 50.00 grams of barium nitrate to form sodium nitrate and barium sulfate.

$$Na_2SO_4 + Ba(NO_3)_2 \rightarrow 2NaNO_3 + BaSO_4$$

How many grams of barium sulfate will form?

- 6. 15.5 grams of hydrogen gas reacts with 30.0 grams of oxygen gas to form water vapor. $2H_2 + O_2 \rightarrow 2H_2O$ How many grams of water vapor will form?
- 10.0 g of pootio poid (CH, CO, H) reports with 10.0 g of load(II) by drawing
- 10.0 g of acetic acid (CH₃CO₂H) reacts with 10.0 g of lead(II) hydroxide to form water and lead(II) acetate (Pb(CH₃CO₂)₂) and water.

 $2CH_3CO_2H + Pb(OH)_2 \rightarrow Pb(CH_3CO_2)_2 + 2H_2O$

- (a) Which reactant is in excess?
- (b) How many grams of it will remain after the reaction goes to completion? How many grams of lead (II) acetate will form?
- 8. 25.3 g of magnesium reacts with 44.3 g of copper (II) nitrate to form copper and magnesium nitrate.

 $Mg + Cu(NO_3)_2 \rightarrow Cu + Mg(NO_3)_2$

- (a) What mass of copper will form?
- (b) What mass of reactants will remain unreacted?